Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(3): 1703-1712, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38433388

RESUMO

Cationic bolaamphiphiles have gained significant attention in various research fields, including materials science, drug delivery, and gene therapy, due to their unique properties and potential applications. The objective of the current research is to develop more effective cationic bolaamphiphiles. Thus, we have designed and synthesized two cationic bolaamphiphiles (-(CH2)12(2,3-dihydroxy-N,N-dimethyl-N-(3-ureidopropyl)propan-1-aminium chloride))2 (C12(DDUPPAC)2)) and (-(CH2)12(N-(3-(carbamoyloxy)propyl)-2,3-dihydroxy-N,N-dimethylpropan-1-aminium chloride)2 (C12(CPDDPAC)2) containing urea and urethane linkages, respectively. We have investigated their self-assembly properties in water using several techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. Their biological applications, e.g., in vitro gene transfection, antibacterial activity, and cytotoxicity, were studied. Both bolaamphiphiles were observed to produce aggregates larger than spherical micelles above a relatively low critical aggregation concentration (cac). The calorimetric experiments suggested the thermodynamically favorable spontaneous aggregation of both bolaforms in water. The results of interaction studies led to the conclusion that C12(CPDDPAC)2 binds DNA with a greater affinity than C12(DDUPPAC)2. Also, C12(CPDDPAC)2 is found to act as a more efficient gene transfection vector than C12(DDUPPAC)2 in 264.7 cell lines. The in vitro cytotoxicity assay using MTT, however, revealed that neither of the bolaamphiphiles was toxic, even at higher quantities. Additionally, both bolaforms show beneficial antibacterial activity.


Assuntos
Cloretos , Furanos , Piridonas , Água , Transfecção , Linhagem Celular
2.
Int J Biol Macromol ; 256(Pt 1): 128437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013079

RESUMO

Staphylococcus aureus has become a significant cause of health risks in humankind. Staphylococcal superantigens (SAgs) or enterotoxins are the key virulent factors that can exhibit acute diseases to severe life-threatening conditions. Recent literature reports S. aureus has steadily gained new enterotoxin genes over the past few decades. In spite of current knowledge of the established SAgs, several questions on putative enterotoxins are still remaining unanswered. Keeping that in mind, this study sheds light on a putative enterotoxin SEl26 to characterize its structural and functional properties. In-silico analyses indicate its close relation with the conventional SAgs, especially the zinc-binding SAgs. Additionally, important residues that are vital for the T-cell receptor (TcR) and major histocompatibility complex class II (MHC-II) interaction were predicted and compared with established SAgs. Besides, our biochemical analyses exhibited the binding of this putative enterotoxin with MHC-II, followed by regulating pro-inflammatory and anti-inflammatory cytokines.


Assuntos
Enterotoxinas , Staphylococcus aureus , Enterotoxinas/genética , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Superantígenos/genética , Superantígenos/metabolismo , Staphylococcus , Antígenos de Histocompatibilidade Classe II/genética
3.
Funct Integr Genomics ; 22(2): 193-214, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35169940

RESUMO

The calmodulin-binding transcription activator (CAMTA) is a family of transcriptional factors containing a cluster of calmodulin-binding proteins that can activate gene regulation in response to stresses. The presence of this family of genes has been reported earlier, though, the comprehensive analyses of rice CAMTA (OsCAMTA) genes, their promoter regions, and the proteins were not deliberated till date. The present report revealed the existence of seven CAMTA genes along with their alternate transcripts in five chromosomes of rice (Oryza sativa) genome. Phylogenetic trees classified seven CAMTA genes into three clades indicating the evolutionary conservation in gene structure and their association with other plant species. The in silico study was carried out considering 2 kilobases (kb) promoter regions of seven OsCAMTA genes regarding the distribution of transcription factor binding sites (TFbs) of major and plant-specific transcription factors whereas OsCAMTA7a was identified with highest number of TFbs, while OsCAMTA4 had the lowest. Comparative modelling, i.e., homology modelling, and molecular docking of the CAMTA proteins contributed the thoughtful comprehension of protein 3D structures and protein-protein interaction with probable partners. Gene ontology annotation identified the involvement of the proteins in biological processes, molecular functions, and localization in cellular components. Differential gene expression study gave an insight on functional multiplicity to showcase OsCAMTA3b as most upregulated stress-responsive gene. Summarization of the present findings can be interpreted that OsCAMTA gene duplication, variation in TFbs available in the promoters, and interactions of OsCAMTA proteins with their binding partners might be linked to tolerance against multiple biotic and abiotic cues.


Assuntos
Oryza , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Simulação de Acoplamento Molecular , Família Multigênica , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética
4.
Cancer Res ; 67(24): 11848-58, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089815

RESUMO

The ubiquitious enzyme topoisomerase I can be targeted by drugs which turn these enzymes into cellular poisons and subsequently induce cell death. Drugs like staurosporine, which do not target topoisomerase I directly, can also lead to stabilization of topoisomerase I-DNA cleavable complexes by an indirect process of reactive oxygen species (ROS) generation and subsequent oxidative DNA damage. In this study, we show that betulinic acid, a catalytic inhibitor of topoisomerases, inhibits the formation of apoptotic topoisomerase I-DNA cleavable complexes in prostate cancer cells induced by drugs like camptothecin, staurosporine, and etoposide. Although events like ROS generation, oxidative DNA damage, and DNA fragmentation were observed after betulinic acid treatment, there is no topoisomerase I-DNA cleavable complex formation, which is a key step in ROS-induced apoptotic processes. We have shown that betulinic acid interacts with cellular topoisomerase I and prohibits its interaction with the oxidatively damaged DNA. Using oligonucleotide containing 8-oxoguanosine modification, we have shown that betulinic acid inhibits its cleavage by topoisomerase I in vitro. Whereas silencing of topoisomerase I gene by small interfering RNA reduces cell death in the case of staurosporine and camptothecin, it cannot substantially reduce betulinic acid-induced cell death. Thus, our study provides evidence that betulinic acid inhibits formation of apoptotic topoisomerase I-DNA complexes and prevents the cellular topoisomerase I from directly participating in the apoptotic process.


Assuntos
Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Topoisomerase I , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Linhagem Celular Tumoral , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Triterpenos Pentacíclicos , Neoplasias da Próstata , Ácido Betulínico
5.
Nucleic Acids Res ; 34(21): 6286-97, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17098934

RESUMO

The active site tyrosine residue of all monomeric type IB topoisomerases resides in the C-terminal domain of the enzyme. Leishmania donovani, possesses unusual heterodimeric type IB topoisomerase. The small subunit harbors the catalytic tyrosine within the SKXXY motif. To explore the functional relationship between the two subunits, we have replaced the small subunit of L.donovani topoisomerase I with a C-terminal fragment of human topoisomerase I (HTOP14). The purified LdTOP1L (large subunit of L.donovani topoisomerase I) and HTOP14 were able to reconstitute topoisomerase I activity when mixed in vitro. This unusual enzyme, 'LeishMan' topoisomerase I (Leish for Leishmania and Man for human) exhibits less efficiency in DNA binding and strand passage compared with LdTOP1L/S. Fusion of LdTOP1L with HTOP14 yielded a more efficient enzyme with greater affinity for DNA and faster strand passage ability. Both the chimeric enzymes are less sensitive to camptothecin than LdTOP1L/S. Restoration of topoisomerase I activity by LdTOP1L and HTOP14 suggests that the small subunit of L.donovani topoisomerase I is primarily required for supplying the catalytic tyrosine. Moreover, changes in the enzyme properties due to substitution of LdTOP1S with HTOP14 indicate that the small subunit contributes to subunit interaction and catalytic efficiency of the enzyme.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Leishmania donovani/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Camptotecina/farmacologia , DNA/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Polarização de Fluorescência , Potássio/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Indian J Med Res ; 123(3): 221-32, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16778306

RESUMO

Protozoan parasites of the order Kinetoplastida cause severe diseases primarily in the tropical and subtropical areas. The enormous development of molecular and cellular biology in recent times have provided opportunities for discovering newer molecular targets for drug designing, which now form a rational basis for the development of improved anti-parasitic therapy. DNA topoisomerases play a key role in cellular processes affecting the topology and organization of intracellular DNA. Recently, emergence of the bi-subunit topoisomerase I in the kinetoplastid family has brought a new twist in topoisomerase research related to evolution, functional conservation and as a potential target that can be exploited in drug designing and development of new intervention strategies. This review summarizes the biology of kinetoplastid topoisomerases, which are the key molecular targets in antileishmanial chemotherapy.


Assuntos
DNA Topoisomerases/química , DNA de Cinetoplasto/metabolismo , Leishmania donovani/enzimologia , Animais , DNA/química , Humanos , Imuno-Histoquímica , Leishmaniose/terapia , Microscopia Eletrônica , Estrutura Terciária de Proteína , Especificidade da Espécie , Trypanosoma
7.
Nucleic Acids Res ; 34(4): 1121-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16488884

RESUMO

Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 microM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I-DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I-DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Delta39LS lacking 1-39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335-16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Delta39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.


Assuntos
Camptotecina/farmacologia , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Leishmania donovani/enzimologia , Animais , DNA/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Flavanonas/química , Flavanonas/farmacologia , Flavonoides/química , Luteolina/química , Luteolina/farmacologia , Mutação , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quercetina/química , Quercetina/farmacologia
8.
J Biol Chem ; 280(16): 16335-44, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15711017

RESUMO

Leishmania donovani topoisomerase I is an unusual bisubunit enzyme. We have demonstrated earlier that the large and small subunit could be reconstituted in vitro to show topoisomerase I activity. We extend our biochemical study to evaluate the role of the large subunit in topoisomerase activity. The large subunit (LdTOP1L) shows a substantial degree of homology with the core DNA binding domain of the topoisomerase IB family. Two N-terminal truncation constructs, LdTOP1Delta39L (lacking amino acids 1-39) and LdTOP1Delta99L (lacking amino acids 1-99) of the large subunit were generated and mixed with intact small subunit (LdTOP1S). Our observations reveal that residues within amino acids 1-39 of the large subunit have significant roles in modulating topoisomerase I activity (i.e. in vitro DNA relaxation, camptothecin sensitivity, cleavage activity, and DNA binding affinity). Interestingly, the mutant LdTOP1Delta99LS was unable to show topoisomerase I activity. Investigation of the loss of activity indicates that LdTOP1Delta99L was unable to pull down glutathione S-transferase-LdTOP1S in an Ni(2+)-nitrilotriacetic acid co-immobilization experiment. For further analysis, we co-expressed LdTOP1L and LdTOP1S in Escherichia coli BL21(DE3)pLysS cells. The lysate shows topoisomerase I activity. Immunoprecipitation revealed that LdTOP1L could interact with LdTOP1S, indicating the subunit interaction in bacterial cells, whereas immunoprecipitation of bacterial lysate co-expressing LdTOP1Delta99L and LdTOP1S reveals that LdTOP1Delta99L was significantly deficient at interacting with LdTOP1S to reconstitute topoisomerase I activity. This study demonstrates that heterodimerization between the large and small subunits of the bisubunit enzyme appears to be an absolute requirement for topoisomerase activity. The residue within amino acids 1-39 from the N-terminal end of the large subunit regulates DNA topology during relaxation by controlling noncovalent DNA binding or by coordinating DNA contacts by other parts of the enzyme.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Leishmania donovani/enzimologia , Sequência de Aminoácidos , Animais , Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/isolamento & purificação , Leishmania donovani/genética , Mutação , Deleção de Sequência , Inibidores da Topoisomerase I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...